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Stability of fluid flow past a membrane
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The stability of fluid flow past a membrane of infinitesimal thickness is analysed in
the limit of zero Reynolds number using linear and weakly nonlinear analyses. The
system consists of two Newtonian fluids of thickness R∗ and HR∗, separated by an
infinitesimally thick membrane, which is flat in the unperturbed state. The dynamics
of the membrane is described by its normal displacement from the flat state, as well
as a surface displacement field which provides the displacement of material points
from their steady-state positions due to the tangential stress exerted by the fluid
flow. The surface stress in the membrane (force per unit length) contains an elastic
component proportional to the strain along the surface of the membrane, and a
viscous component proportional to the strain rate. The linear analysis reveals that the
fluctuations become unstable in the long-wave (α→ 0) limit when the non-dimensional
strain rate in the fluid exceeds a critical value Λt, and this critical value increases
proportional to α2 in this limit. Here, α is the dimensionless wavenumber of the
perturbations scaled by the inverse of the fluid thickness R∗−1, and the dimensionless
strain rate is given by Λt = (γ̇∗R∗η∗/Γ ∗), where η∗ is the fluid viscosity, Γ ∗ is the
tension of the membrane and γ̇∗ is the strain rate in the fluid. The weakly nonlinear
stability analysis shows that perturbations are supercritically stable in the α→ 0 limit.

1. Introduction
Fluid flow past flexible surfaces is encountered in industrial applications like

membrane reactors and hollow fibre reactors, as well as in separation processes
in pharmaceutical industries, where there is flow and diffusion across tubes and
channels made up of polymer matrices and membranes. Flow past membranes is
also encountered in biological systems, where surfaces and organelles of cells are
made up of deformable lipid membranes. In this analysis, the effect of membrane
deformation on the stability of the flow of a fluid adjacent to a membrane is examined
using linear and nonlinear approaches. The membrane is described by a constitutive
equation where the normal stress difference across the membrane surface is balanced
by membrane tension, while the tangential stress exerted by the fluid is balanced by
a surface stress along the membrane surface due to the strain in the plane of the
membrane. This type of constitutive relation has been used previously to describe the
deformation of viscoelastic polymer films (Harden & Pleiner 1994).

Kumaran (1995) and Kumaran, Fredrickson & Pincus (1994) studied the flow of
a fluid past a viscoelastic material at zero Reynolds number, where inertial terms
were neglected in the conservation equations. The results indicated that the flow of a
Newtonian fluid over a finite-thickness viscoelastic gel in the limit of zero Reynolds
number is unstable, and the mechanism of instability is the transfer of energy from
mean flow to fluctuations due to the deformation work done by mean flow at the
interface. It should be noted that this result is qualitatively different from that of
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Yih (1967) and Hooper & Boyd (1983) for the interface between two fluids, and
Kumaran & Srivatsan (1998) for the flow past a membrane, because inertial effects
were neglected, and the growth rate is not proportional to the Reynolds number.
Therefore, this is a zero Reynolds number instability where the flow becomes unstable
even in the absence of inertia. The important difference between the studies of
Kumaran (1995) and Kumaran & Srivatsan (1998) is that tangential motion of the
interface was permitted in the former, whereas it was not permitted in the latter.
Therefore, it is of interest to determine whether tangential motion of the membrane
surface could result in an instability in the absence of inertia. This issue is of
importance because most membranes in biological systems do have some tangential
motion. In lipid bilayers, for example, the tangential motion would result in a variation
in the areal density (number per unit area) of the lipid molecules in the membrane, and
this would be resisted by an in-plane stress in the membrane. A similar motion could
also take place in surfactant monolayers at surfaces. The effect of tangential motion
on the stability of the flow past a membrane surface is examined here. It is shown
that the flow could become linearly unstable when tangential motion is permitted
in the absence of inertia, consistent with the results of Kumaran & Srivatsan (1998)
which indicated that the flow is stable at zero Reynolds number in the absence of
tangential motion.

The fluid flow past a membrane cannot strictly be treated as a flow in which the
properties are invariant along the flow direction, because the tangential stress exerted
by the fluid in the base state causes a variation in the tension of the membrane,
and the membrane tension is a function of the tangential position. However, in the
present analysis, we consider flows for which the fluid strain rate at the surface is
small compared to the characteristic strain rate (Γ ∗/η∗/R∗) for the system, where Γ ∗
is the surface tension, η∗ is the fluid viscosity and R∗ is the width of the fluid layer (the
convention used here is that parameters with a superscript ∗ are dimensional, while
parameters without the superscript are non-dimensional). In this case, the variation of
the membrane tension over distances comparable to the wavelength of the perturba-
tions is small, and this variation can be neglected in comparison to the mean tension.
More specifically, the rate of change of membrane tension in the tangential direction
scales as η∗γ̇∗, where γ̇∗ is the strain rate in the fluid at the membrane surface. The
analysis reveals that the most unstable modes have wavenumber α∗ � R∗−1, and the
dimensional strain rate for these γ̇∗ ∝ R∗α∗2Γ ∗/η∗. Since the wavelength of the most
unstable modes scales as α∗−1, the variation of the membrane tension over length
scales comparable to the wavelength of the most unstable mode is R∗α∗Γ ∗. This vari-
ation is small compared to the membrane tension for α∗ � R∗−1, and consequently
the membrane tension is considered to be a constant over lengths comparable to the
wavelength of the most unstable mode.

The condition that the flow-induced tension is neglected in comparison with the
mean tension in the membrane results in a lower bound on the allowable wave-
numbers. This can be seen as follows: the ratio of flow-induced tension and the
imposed mean membrane tension is given by (η∗γ̇∗L∗/Γ ∗) which is equal to ΛL∗/R∗
where Λ = γ̇∗R∗η∗/Γ ∗ is the non-dimensional strain rate, and L∗ is the lateral extent
of the membrane. The condition for flow-induced tension to be less than the mem-
brane tension is given by R∗α∗ � Λ, since the longest allowable wavelength has a
wavenumber α∗ ∝ (1/L∗). This puts a lower bound on the allowable wavenumbers
in the α∗ → 0 limit. However, the analysis shows that the non-dimensional destabi-
lizing velocity Λ ∼ (α∗2R∗2) in the α∗ → 0 limit, and the condition that (α∗R∗ � Λ) is
satisfied and the analysis is self-consistent in the low-wavenumber limit.
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An examination of the numerical values of membrane and fluid parameters indi-
cates that this parameter regime is encountered in biological systems. An additional
parameter that enters into the analysis for compressible membranes is the mod-
ulus of elasticity along the surface, K∗. Using estimates K∗ = 10−1 N m−1 and a
tension of Γ ∗ = 10−3 N m−1 corresponding to a linear extension ratio of 1%, the non-
dimensional modulus of elasticity is K = K∗/Γ ∗ ∼ 100. The non-dimensional strain
rate causing instability Λ ∼ α2(Γ ∗/η∗R∗). For realistic values of η∗ = 10−4 kg m−1 s−1,
Γ ∗ = 10−3 N m−1 and R∗ = 10−4 m, and α ∼ 10−2 corresponding to wavelengths of
around 100 times the channel width, the calculations indicate that the dimensional
strain rate for unstable fluctuations is γ̇∗ ∼ 10 s−1. This corresponds to a maximum
velocity of 10−3 m s−1 in a channel of width 10−4 m, and this is certainly in the range
of velocities encountered in biological systems. The variation of flow-induced tension
over a wavelength is 10−5 N m−1 and can be neglected in comparison with the imposed
mean tension.

The effect of nonlinear interactions on the growth of the perturbations is examined
using a weakly nonlinear analysis. The nonlinear terms can saturate the exponential
growth of disturbances in a linearly unstable system, leading to a supercritically stable
state, thereby taking a linearly unstable system to a new stable state. This occurs
in Rayleigh–Bérnard convection in a fluid heated from below, and in the Taylor–
Couette instability in a rotating fluid. In other instances, a linearly stable system can
become unstable to finite-amplitude disturbances due to nonlinear interactions. The
bifurcation is then called subcritical and is known to occur in plane Poiseuille flow.

Two approaches have been used previously for the weakly nonlinear analysis of
parallel flows. The weakly nonlinear theory of Stuart (1960) is applicable to finite
but small disturbances, so that the nonlinearities can be treated perturbatively. This
involves the assumption that only the fundamental mode exists in the system at
the onset of instability and that higher harmonics of the fundamental mode are
generated due to nonlinear interactions. The amplitudes of the higher harmonics are
then expanded in an asymptotic series in the amplitude of the most unstable mode.
The second approach involves the full numerical simulation of the time evolution of
an arbitrary disturbance imposed on the laminar flow and so there is no restriction
on amplitude of disturbances.

There has been some work on the nonlinear stability of flow past flexible surfaces
(Pierce 1992; Rotenberry 1992; Rotenberry & Saffman 1990). All these studies have
considered the Tollmien–Schlichting instability which exists in the flow past a rigid
surface but which is modified due to the flexibility of the wall medium. Pierce
(1992) derived the Ginzburg–Landau equation using the weakly nonlinear analysis
for the case of plane Poiseuille flow in a channel with compliant walls of finite
thickness. The result of Pierce (1992) indicated that the bifurcation is subcritical,
but the Landau constant was found to vary significantly with the variation of wall
parameters. Rotenberry & Saffman (1990) studied the weakly nonlinear stability of
plane Poiseuille flow in a channel with compliant walls. The compliant walls were
modelled as spring-backed plates, and only normal motion was permitted in the
wall. They derived the appropriate Ginzburg–Landau equation using the method of
Stewartson & Stuart (1971), and their results showed that the flow is subcritically
unstable in the limit of rigid walls, which was in agreement with the previous
studies on a rigid channel. However, when the wall is made compliant, there is
a cross-over from subcritical instability to supercritical equilibration. Rotenberry
(1992) studied the finite-amplitude stability of flow in a channel with compliant
walls (modelled as spring-backed walls without tangential motion) by numerically
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calculating the travelling wave solutions that bifurcate along the neutral stability
curve. The disturbance stream function was expanded in a Fourier series and only
the first four Fourier modes were taken into account in the numerical calculation.
Thomas (1992) studied the weakly nonlinear stability of Blasius flow past a spring-
backed wall using a triple-deck asymptotic analysis in the limit of high Re. This
study also considered the Tollmien–Schlichting modes and the results indicated the
presence of supercritical equilibrium-amplitude states. All these studies have examined
the limit of high Reynolds number, and in this limit nonlinearities are present in both
the governing equations and boundary conditions. Recently, Shankar & Kumaran
(2001) carried out the weakly nonlinear analysis of flow over gel at low Reynolds
number. They found that the results were sensitive to the boundary conditions applied
at the lower surface of the gel. For a ‘grafted gel’ where zero displacement conditions
were applied, the bifurcation was subcritical. However for the case of ‘adsorbed
gel’, where zero tangential stress conditions are applied at the lower surface, the
system was supercritically stable for a large range of parameters ηr , the ratio of gel to
fluid viscosity, and H , the gel thickness. The bifurcation changed from supercritical
to subcritical as the wavenumber was increased. The results for the grafted gel were
verified in the experiments of Kumaran & Muralikrishnan (2000).

The linear stability characteristics of the present system differ from those of Stuart
(1960) and Shankar & Kumaran (2001), because for an imposed fluid strain rate Λ,
perturbations with wavenumber less than a transition value α = C

√
Λ are unstable,

where C is a constant. This is in contrast to earlier studies cited above where the
most unstable mode has a finite wavenumber, and is similar to the stability of the
interface between two fluids (Joseph & Renardy 1993). Though an unbounded system
is unstable in the limit Λ→ 0, a bounded system of size L has a critical velocity for
transition from stable to unstable modes when

√
Λ > (2π/LC), and the wavenumber

of the most unstable mode is (2π/L). In this case, there is a discrete spectrum in the
low-wavenumber limit, consisting of the fundamental mode with wavenumber (2π/L)
and its harmonics. In these cases, it is known that the stabilization of supercritical
states could take one of two forms. In cases where the mode with the largest growth
rate has a first harmonic which is stable, a time-dependent two-mode equilibrium
is achieved where the mode with the largest growth rate is stabilized by its first
harmonic. In other cases, the nonlinear interactions result in states where energy is
continually exchanged between different two-mode states. The linear stability analysis
indicates that the present instability falls into the former category, where the first
harmonic of the linearly fastest growing mode is stable. Therefore, we carry out a
weakly nonlinear analysis to determine whether the nonlinear interaction stabilizes
this two-mode state.

The present work adopts the approach of Stuart (1960) and Shankar & Kumaran
(2001) for the shear flow of two Newtonian fluids past a membrane. However, the
approach used here is simpler for the following reason. In Stuart (1960), zero velocity
boundary conditions are applied at the walls of the channel. If the equation for the
linear growth rate of the perturbations is reduced to a linear equation of the form
Lφ = 0, whereL is a linear operator and φ is a dynamical variable, it is necessary to
determine the adjoint operatorL∗ and then apply the Fredholm alternative theorem.
In the present case, the boundary conditions at the membrane surface are used to
obtain the dispersion matrix, and the determinant of this matrix is set equal to
zero to determine the linear growth rate. Therefore, it is sufficient to determine the
adjoint of the dispersion matrix of boundary conditions in the weakly nonlinear
analysis.
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Figure 1. Schematic of the membrane configuration.

The problem formulation is described in § 2. Section 3 describes the weakly non-
linear theory for the problem, and § 4 contains the principal results of the analysis.
The details of the stability analysis are provided in Appendix A.

2. Problem formulation
The system, shown in figure 1, consists of a membrane of infinitesimal thickness

and negligible inertia and surface tension Γ ∗ stretched along the interface z∗ = 0
between two fluids A and B of thickness R∗ and HR∗ and viscosities η∗a and η∗b
respectively. The surface bounding the fluid A at z∗ = R∗ moves with a velocity V ∗a ,
while the surface bounding the fluid B at z∗ = −HR∗ moves with a velocity V ∗b so that
the undisturbed velocity profiles are given by v̄∗ax = V ∗a z∗/R∗ and v̄∗bx = −V ∗b z∗/(R∗H).
The fluid is described by the incompressible Stokes equations in the absence of inertia.
Due to perturbations in the fluid stresses at the membrane surface, a material point
on the surface undergoes a displacement from its steady-state position (x∗, 0) to a new
position (x∗ + ξ∗, ζ∗), and the displacements in the x∗- and z∗-directions are denoted
by u∗x and u∗z respectively. The relation between (ξ∗, ζ∗) and (u∗x, u∗z) is discussed a
little later. It is important to note that (u∗x, u∗z) are the three-dimensional displacement
fields, and not the displacement along the surface, which is denoted by u∗s . The relation
between the surface displacement u∗s and the three-dimensional displacement fields
(u∗x, u∗z) is also given a little later.

The dimensional surface stress tensor for the membrane σ∗αβ is related to the strain
along the membrane surface e∗αβ by the constitutive relation (Harden & Pleiner 1994)

σ∗αβ = (B∗ + η∗bm∂t)δαβe
∗
γγ + (G∗ + η∗sm∂t)(e

∗
αβ − (1/2)δαβe

∗
γγ), (2.1)

where membrane parameters B∗ (bulk modulus) and G∗ (shear modulus) are defined
in units of (force/length), and η∗bm (bulk viscosity) and η∗sm (shear viscosity) are defined
in units of (force/length× time). The tensor e∗αβ is the rate of deformation tensor
in the plane of the membrane, and σ∗αβ is the two-dimensional stress tensor along
the membrane surface which has units of (force/length). In the above equation, the
dimensional rate of deformation tensor is expressed in terms of the displacement field
along the membrane surface as

e∗αβ = (1/2)(∂∗αu
∗
β + ∂∗βu

∗
α). (2.2)

For the present system, it can be proved that Squire’s theorem holds so that two-
dimensional perturbations are always more unstable than three-dimensional ones.
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Therefore, it suffices to study the stability of the system to two-dimensional distur-
bances. In this case, the membrane tension can be written as

σ∗ss = (K∗ + η∗m∂
∗
t )e
∗
ss, (2.3)

where the subscript s indicates the components along the membrane surface in
the (x∗, z∗)-plane, and it is important to note that there is no summation in the
above equation. Here, K∗ is the effective elastic modulus of the membrane given by
K∗ = B∗ + (1/2)G∗ and η∗m = η∗bm + (1/2)η∗sm. The lengths are scaled by R∗, the vel-
ocities by (Γ ∗/η∗a), the time coordinate by (R∗η∗a/Γ ∗), the fluid stresses and pressure by
(Γ ∗/R∗), and the membrane stresses by Γ ∗ to obtain a dimensionless equation for the
stress along the membrane surface:

σss = (K + ηm∂t)ess = (K + ηm∂t)∂sus, (2.4)

where σss = σ∗ss/Γ ∗, K = K∗/Γ ∗ and ηm = η∗m/R∗η∗a . For two-dimensional perturba-
tions with height variations in the x-direction, the displacement vector us along the
membrane in the (x, z)-plane can be expressed in terms of the displacement fields
(ux, uz) using simple geometric considerations,

us = ux(1 + (∂xuz)
2)1/2, (2.5)

and the gradient along the surface can be written as ∂s = t · ∇, where t is the tangent
to the membrane surface and ∇ is the three-dimensional gradient operator.

The parameters Λa = (V ∗a η∗a/Γ ∗) and Λb = −(V ∗b η∗a/Γ ∗H) are defined so that the
scaled mean velocities are

v̄lx = Λlz, (2.6)

where l is a for fluid A and b for fluid B. The equations governing the dynamics of
fluids A and B are the usual incompressible Stokes equations in the zero Reynolds
number limit, which are non-dimensionalized as above to provide

∂iv
l
i = 0, (2.7)

−∂ipl +
ηl

ηa
∂2
j v
l
i = 0, (2.8)

where ηa and ηb are the non-dimensional viscosities of fluid A and B such that ηa = 1
and ηb = η∗b/η∗a = ηr . The boundary conditions at the interface are the continuity of
normal and tangential velocities of the two fluids and the membrane, and the normal
and tangential force balance conditions. The force balance requires that the difference
between the tangential fluid stresses is balanced by the gradient in the tangential stress
along the membrane, and the difference between the normal fluid stresses is balanced
by the normal force due to membrane tension. Since the position of the interface has
to be determined as a part of the solution, the boundary conditions at the perturbed
interface are expanded about their values at the unperturbed interface z = 0. If F is a
fluid parameter (fluid velocity, stress), and M is a parameter defined on the membrane
surface (membrane displacement, stress), F |x+ξ,ζ and Mx+ξ at the perturbed interface
are expanded in a Taylor series about their value at (x, 0) (figure 2)

F |x+ξ,ζ = [F]0 + [∂xF]0ξ+ [∂zF]0ζ + 1
2
[∂2
xF]0ξ

2 + 1
2
[∂2
zF]0ζ

2 + [∂x∂zF]ζξ+ · · · , (2.9)

M|x+ξ = [M]0 + [∂xM]0ξ + 1
2
[∂2
xM]0ξ

2 + · · · , (2.10)

where [· · ·]0 represent quantities evaluated at the unperturbed interface, and ξ and ζ
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Figure 2. Configuration of the perturbed interface with the unit vectors.

are obtained as a part of the solution,

ξ ≡ ux(x+ ξ, t) = [ux]0 + [∂xux]0ξ + 1
2
[∂2
xux]0ξ

2 + · · · , (2.11)

ζ ≡ uz(x+ ξ, t) = [uz]0 + [∂xuz]0ξ + 1
2
[∂2
xuz]0ξ

2 + · · · . (2.12)

From the above expressions, infinite series representations for ξ and ζ are obtained,
and these are truncated at the required order in the weakly nonlinear theory. The
velocity field in the membrane (vmi ) is defined as the substantial derivative of the
displacement field,

vmi = ∂tui + vmj ∂jui. (2.13)

For the x- and z-components of the membrane velocity vmi , the above expressions
become

vmx = ∂tux + vmx ∂xux, (2.14)

vmz = ∂tuz + vmx ∂xuz. (2.15)

The above equations are solved to determine vmx and vmz ,

vmx =
∂tux

1− ∂xux = ∂tux(1 + ∂xux + (∂xux)
2 + O((∂xux)

3), (2.16)

vmz = ∂tuz +
∂tux

1− ∂xux ∂xuz = ∂tuz + ∂tux ∂xuz(1 + ∂xux + O((∂xux)
2)). (2.17)

The unit normal n and the unit tangent t to the perturbed interface are defined as
(figure 2)

n =
−ex(∂ζ/∂x) + ez√

1 + (∂ζ/∂x)2
, t =

ex + ez(∂ζ/∂x)√
1 + (∂ζ/∂x)2

. (2.18)

The matching conditions for the velocity and stress at the perturbed interface (x+ξ, ζ)
are

(ti v
a
i )|x+ξ,ζ = (ti v

b
i )|x+ξ,ζ = (ti v

m
i )|x+ξ,ζ , (2.19)

(ni v
a
i )|x+ξ,ζ = (ni v

b
i )|x+ξ,ζ = (ni v

m
i )|x+ξ,ζ , (2.20)

[niτijnj]
a
x+ξ,ζ − [niτijnj]

b
x+ξ,ζ = (∇s · n)x+ξ,ζ , (2.21)

[tiτijnj]
a
x+ξ,ζ + [tiτijnj]

b
x+ξ,ζ + ∂2

s σss|x+ξ,ζ = 0, (2.22)

where the superscript m refers to variables defined on the membrane surface, ∇s is
the gradient along the membrane surface in the (x, z)-plane, and σ is the stress tensor
along the membrane.

The terms in the boundary conditions (2.19), (2.20), (2.21), (2.22) are expanded in
Taylor series in the parameters ux and uz . Due to the perturbation to the interface
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Figure 3. Schematic for the variation of amplitude with wavenumber for a constant top-plate
velocity Λa.

position, the normal stress balance (2.21) contains the shear stress (τxz) of the mean
flow, while the normal stress τzz appears in the tangential stress balance (2.22).

3. Theory
In this section, the weakly nonlinear theory is developed for flow of two fluids over

a viscoelastic membrane in the zero Reynolds number limit. The governing equations
(2.7) and (2.8) are linear, and nonlinearities arise due to the Taylor expansion of the
boundary conditions about the unperturbed state, as well as due to the variation of
the surface normal due to the perturbations. The perturbations to the velocity and
stress fields are expressed using the function E(x, t) = exp[i(αtx+ωt)] where ω is the
frequency of the perturbations. In the weakly nonlinear theory, an expansion is used
in the harmonic series,

φ(x, z, t) =

∞∑
k=0

∞∑
n=k

(A1(τ))
n[Ekφ̃(k,n)(z) + E−kφ̃(k,n)†(z)], (3.1)

where φ̃(0,0) is the value of the variable in the mean flow, the superscript† denotes
a complex conjugate, A1(τ) = εA(τ) is the amplitude of the wave which varies on
the slow time scale τ (to be defined below), ε is a small parameter which gives the
amplitude of perturbations, and A(τ) is an O(1) quantity. It should be noted that
A1(τ) and A(τ) are real, since the temporal oscillations are included in E(x, t).

In the vicinity of the transition point for the linear problem (Λt, αt), the amplitude
is governed by the Landau expansion,

A1(τ)
−1 dtA1(τ) = s(0)

r + A1(τ)
2s(1)
r + · · · , (3.2)

where s(0)
r is the real part of the linear growth rate s(0), s(1)

r is the real part of the
first Landau constant s(1), and Λt is the strain rate at transition. In the present
analysis, we restrict attention to the case where Λb = 0 for the bottom fluid, and
the transition strain rate Λt corresponds to the strain rate of the top fluid A
at the onset of instability. For a system of lateral extent L∗, the lowest possible
wavenumber is αL = (2πR∗/L∗), and perturbations with this wavenumber become
unstable when the dimensionless strain rate is Λa = Λt, as shown schematically in
figure 3. When Λa is equal to Λt, the real part of the growth rate is identically zero.
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When Λa is slightly larger than Λt (Λa − Λt � Λa), the real part can be written as
sr = (dsr/dΛa)|Λa=Λt(Λa − Λt), where the velocity difference Λa − Λt drives the linear
instability. If s(1)

r is O(1), then the second term in the right-hand side of (3.2) is O(ε2),
and a balance is achieved if (Λa − Λt) ds(0)

r /dΛa ∼ ε2, where ε is the small parameter
which gives the amplitude of the perturbations. For definiteness, let (Λa − Λt) = Λ2ε

2,
where Λ2 is O(1). This term is balanced by the term on the left-hand side of (3.2),
and so we introduce the slow time scale in the time derivative as dt = ε2 dτ. Multiple
time scales arise because there is a fast time scale (t) corresponding to the inverse of
the frequency of oscillations, and a slow time scale (τ) over which the amplitude of
the perturbations grows. At the neutral stability curve, the real part of the growth
rate is zero, and very near the neutral stability curve it is expected that the time scale
for the growth of perturbations is long compared to the period of oscillations. The
amplitude is then assumed to vary over the slow time scale while the frequency is
incorporated explicitly in the expansion with a faster time scale (3.1). Since A1(τ) is
independent of the fast time scale t, the above equation becomes

A−1 dτA = Λ2 ds(0)
r /dΛa + s(1)

r A
2. (3.3)

This is the ‘scaled’ version of the Landau equation in the vicinity of the critical point
of the linear neutral curve. Similarly, the frequency of oscillations ω is also expanded
in the following series:

ω = s
(0)
i + A(τ)2s

(1)
i + · · · , (3.4)

where s(0)
i is the frequency of perturbations obtained from the linear theory and s(1)

i is
the modification to the frequency of the perturbations due to self-interactions.

All the dynamical quantities are expanded in the amplitude and harmonic expan-
sions as in equation (3.1). In the limit of zero inertia, the governing equations are
linear and the equations for φ̃(k,n) do not contain any inhomogeneous terms. However,
as stated before, all the boundary conditions are expanded about the unperturbed
interface and this results in inhomogeneous terms. The boundary conditions for the
problem at order (k, n) contain inhomogeneous terms of order (k, m) where m < n, and
the original nonlinear problem with an unknown interface is reduced to a hierarchy
of linear (but inhomogeneous) problems, which are solved beginning from the linear
(1, 1) problem. Although the expansion in equation (3.1) is general, the assumption
of weakly nonlinear analysis ensures that only (1, 1), (0, 2), (2, 2) and (1, 3) problems
need to be solved. The (1, 1) problem is the linear stability analysis, the (0, 2) problem
is the correction to the mean flow due to the nonlinearities, the (2, 2) problem is the
nonlinear correction to the first harmonic, while the (1, 3) problem is the nonlinear
correction to the fundamental, at which order the Landau equation is recovered. The
details of the solution procedure are provided in Appendix A. As discussed in the
introduction, the solution procedure in the present case is easier than that of Stuart
(1960) and Shankar & Kumaran (2001) because the governing equations are linear
and the boundary conditions at the membrane surface are used to obtain the disper-
sion matrix, and the determinant of this matrix is set equal to zero to determine the
linear growth rate. Therefore, it is sufficient to determine the adjoint of the dispersion
matrix in the weakly nonlinear analysis, instead of determining the adjoint of the
linear operator as in the case of Stuart (1960). The two methods were verified to
give identical results, and the solution procedure using the method of Stuart (1960)
is described in Appendix B. Here, we have followed the simpler procedure of finding
the adjoint of the matrix of boundary conditions.
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Figure 4. Effect of relative viscosity ηr on Λ′t (K = 102, ηm = 0, H = 1.0).

4. Results
The linear stability analysis shows the presence of an instability even in the limit of

zero Reynolds number, for certain membrane and fluid parameters, and the velocity
for transition from stable to unstable modes Λt increases as Λ′tα2 in the α → 0 limit,
where Λ′t(K,H, ηr, ηm) is a coefficient which depends on the membrane and fluid
properties. This indicates that small-wavenumber perturbations are unstable at any
non-zero velocity in this parameter regime. Results are restricted to the case where
there is a non-zero strain rate in the top fluid A, while the bottom fluid B is considered
to be stationary. The expression for the real part of the growth rate near the neutral
stability curve for the case of H = 1 in the α→ 0 limit is

sr = − α4

12K(1 + ηr)3

[
K(1 + ηr)

2 + 3(−1− 6ηr + 7η2
r )
Λ2
a

α4

]
, (4.1)

and the transition velocity is given by

Λt = α2

√
K (1 + ηr)2

3(1 + 6ηr − 7η2
r )
. (4.2)

Figures 4, 5 and 6 show the variation of the neutral stability curves with fluid and
membrane parameters. Figure 4 indicates that perturbations are stabilized by an
increase in the relative viscosity ηr = η∗b/η∗a . The transition velocity Λ′t diverges as
Λ′t ∼ (1− ηr)−1/2 for ηr → 1, and perturbations are stable for ηr > 1.0. The effect of
the bottom fluid thickness H on the transition velocity is complicated. The expression
for the transition velocity for ηr = 1/2 as a function of H in the α→ 0 limit is

Λ′t =
(1 + 2H3)

√
K√

3H (4H5 + 4H3 + 8H2 − 3H − 4)
. (4.3)

The expression for Λt in the limit of H � 1 is given by
√
K/(2

√
3)(2− 1/H2), while

the system is always stable when the bottom fluid thickness is less than 1/
√

2. Figure 5
shows that the system becomes more stable as the height H of the bottom fluid is
decreased and there is a critical value of H below which the system is always stable.
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Figure 5. Effect of top fluid height H on Λ′t (ηr = 0.5, ηm = 0, K = 102.0).
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Figure 6. Effect of membrane elasticity of the membrane K on Λ′t (ηr = 0.5, ηm = 0, H = 1.0).

The effect of the elastic modulus K , shown in figure 6, indicates that the system
is stabilized by an increase in the elastic modulus of the membrane. The transition
velocity Λ′t diverges as

√
K , indicating that the flow past a membrane with no

tangential motion is always stable. This is in agreement with the earlier results of
Kumaran & Srivatsan (1998). The results also show that an increase in the scaled
membrane viscosity ηm stabilizes perturbations, but the stabilization is not appreciable
for ηm < 102.

The frequency of the neutrally stable mode is proportional to α3 in the α→ 0 limit,
and the frequency is given by

ωt = −α
3

2

√
K

3(1 + 6ηr − 7η2
r )

(4.4)

for the case of H = 1 and ηm = 0. As indicated by equation (4.4), perturbations travel
downstream for all the parameter values considered here.
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Figure 7. Variation of real part of growth rate sr with α for different strain rate Λt ( e, Λt = 5.95;
�, Λt = 0.058, K = 102, ηr = 0.5, ηm = 0, H = 1.0).
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Figure 8. Variation of modified equilibrium amplitudes with membrane elasticity K ( e,
Ψ = uz/

√
Λ− Λc; 5, Ψ = ux/

√
Λ− Λc; 4, Ψ = vz/α

3
√
Λ− Λc; �, Ψ = vx/(α

2
√
Λ− Λc), H = 1.0,

ηr = 0.5, ηm = 0).

Figure 7 shows the real part of the growth rate sr vs. α for fixed values of fluid and
membrane parameters. When the dimensionless wavenumber of the fastest growing
mode is O(1), the sr vs. α plot shows a distinct maximum corresponding to the fastest
growing mode. However, for low critical wavenumbers corresponding to low strain
rates, the behaviour is unusual as there is no single fastest growing mode present in
the system. Instead there is a band of wavenumbers near the critical wavenumber
have nearly equal growth rates.

Though the low-wavenumber analysis predicts that there is an instability at zero
wavenumber, in a real system the lowest permissible wavenumber is (2π/L), where L is
the system size in the lateral direction scaled by the channel thickness. The wavenum-
ber spectrum in this case is discrete, consisting of the mode with wavenumber (2π/L)
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Figure 9. Variation of modified equilibrium amplitudes with relative fluid viscosity ηr ,
(symbols as figure 8, H = 1.0, K = 100, ηm = 0).
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Figure 10. Variation of modified equilibrium amplitudes with height of bottom fluid H
(symbols as figure 8, K = 100, ηr = 0.5, ηm = 0).

and its harmonics. The mode with wavenumber (2π/L) becomes unstable for a finite
velocity Λa > Λ′t(2π/L)2. In the regime Λ′t(2π/L)2 < Λa < Λ′t(4π/L)2, the mode with
the lowest permissible wavenumber is unstable, but its first harmonic is stable. In this
regime, a weakly nonlinear stability analysis is carried out to determine whether the
nonlinear interactions stabilize the linearly unstable mode. The equilibrium amplitude
obtained from equation (3.2) is given by

A
eq
1 =

√
(ds0r /dΛt)(Λa − Λt)

s1r
. (4.5)

The analysis indicates that the Landau coefficient s1r is always negative for the
parameter values considered here, indicating that the linearly unstable mode is super-
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critically stable, and the equilibrium amplitude of the fluctuations scales as
√

(Λa − Λt).
Figures 8–10 show the variation of uz/

√
Λa − Λt, vz/(α3

√
Λa − Λt), ux/√Λa − Λt,

vx(α
2
√
Λa − Λt) with membrane parameters elastic modulus, relative viscosity, bottom

fluid thickness and the damping coefficient. Figure 8 indicates that the equilibrium
amplitude of the membrane displacements ux and uz and the membrane velocities
vx and vz decrease with increase in elastic modulus. An increase in relative viscosity
ηr and a decrease in the thickness of the bottom fluid H lead to an increase in the
equilibrium amplitude (figures 9 and 10). The membrane damping does not appre-
ciably affect the amplitude of perturbation. The frequency of oscillations given by the
linear theory (equation (4.4)) has a small correction due to nonlinear interactions.

5. Conclusions
The stability of shear flow of two fluids past a viscoelastic membrane was studied

using linear and weakly nonlinear analysis. The linear stability analysis of this problem
shows that the flow is unstable to small perturbations for a wide range of fluid and
membrane parameters in the limit of zero Reynolds number. The destabilizing velocity
Λt increases proportional to α2 in the limit of α→ 0. Though the linear stability
analysis predicts that there is an instability at zero wavenumber, in a real system the
mode with the lowest permissible wavenumber (2π/L) becomes unstable for a finite
velocity Λa > Λ′t(2π/L)2. In the regime Λ′t(2π/L)2 < Λa < Λ′t(4π/L)2, the mode with
the lowest permissible wavenumber is unstable, but its first harmonic is stable. A
weakly nonlinear stability analysis was carried out in this regime.

The weakly nonlinear analysis for the system indicates that the system is super-
critically stable in the α→ 0 limit and the Landau constant for the system s1r is
negative. Thus the weakly nonlinear analysis indicates that the linearly unstable base
state goes to a new oscillatory state. The equilibrium amplitude of the supercritically
stable state is found to decrease with increase in the membrane elasticity and viscosity
ratio while it increases with increase in H . Membrane damping however does not
have a significant effect on the equilibrium amplitude.

Appendix A. Method of solution
A.1. The k = 1, n = 1 problem

The problem at order k = 1, n = 1 corresponds to the linear stability analysis of the
flow of two fluids separated by a membrane. The governing equations in the two
fluids at this order are

∂zṽ
l(1,1)
z + iαṽl(1,1)

x = 0, (A 1)

−iαp̃l(1,1)
f +

ηl

ηa
(∂2
z − α2)ṽl(1,1)

x = 0, (A 2)

−∂zp̃l(1,1)
f +

ηl

ηa
(∂2
z − α2)ṽl(1,1)

z = 0. (A 3)

The boundary conditions at order (1, 1) are

ṽa(1,1)
z = ṽb(1,1)

z , (A 4)

ṽa(1,1)
x + Λaũ

(1,1)
z = s(0)ũ(1,1)

x , (A 5)

ṽb(1,1)
x + Λbũ

(1,1)
z = s(0)ũ(1,1)

x , (A 6)
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−iαp̃a(1,1)
f + 2∂zṽ

a(1,1)
z = −iαp̃b(1,1)

f +
ηl

ηa
2∂zṽ

b(1,1)
z + (2(Λa − ηrΛb)iα+ α2)ũ(1,1)

z , (A 7)

∂zṽ
a(1,1)
x + iαṽa(1,1)

z =
ηl

ηa
(∂zṽ

b(1,1)
x + iαṽb(1,1)

z ) + (K + 2ηms
(0))α2ũ(1,1)

x , (A 8)

ṽa(1,1)
z = s(0)ũ(1,1)

z , (A 9)

where l is a for fluid A, b for fluid B and m for the membrane. Here, equation (A 4)
gives the normal-velocity continuity condition while equations (A 5) and (A 6) are
the tangential-velocity continuity conditions for the two fluids and the membrane.
Equation (A 7) gives the normal-stress continuity where the last term contains two
contributions to the normal stress. The first is due to mean shear stress coupling,
which arises due to the variation in unit normal to the membrane, while the second
is due to membrane tension. The tangential stress balance is given by equation (A 8).
The eigenfunctions that are consistent with the boundary conditions at z = 1 and
z = −H are obtained analytically,

ṽa(1,1)
z = A1[e

αz − e2α−αz(1− 2α(1− z))] + A2[αe
(2α−αz)(2α(1− z)− z) + αeαzz], (A 10)

ṽb(1,1)
z =B1[e

αz−e−2αH−αz(1+2α(H−z))]+B2[αe
−2Hα−αz(2Hα(H−z)−z)+αeαzz]. (A 11)

The eigenvalue of the linear problem s(0) and the constants in the eigenfunctions A1,
A2, B1, B2 are determined from the boundary conditions at the interface z = 0. To
determine all the four constants, an additional ‘normalization’ condition is required
which we specify here as |ũa(1,1)

z |z=0 = 1. Thus, the (1, 1) eigenfunctions are obtained
according to a specified normalization.

A.2. The k = 0, n = 2 problem

The k = 0, n = 2 problem represents the x-independent correction to the mean flow
due to nonlinear interactions. The fluid continuity and the x and z momentum
equations take the form

∂zṽ
l(0,2)
z = 0, (A 12)

∂2
z ṽ
l(0,2)
x = 0, (A 13)

∂zp̃
l(0,2)
f +

ηl

ηa
∂2
z ṽ
l(0,2)
z = 0. (A 14)

Using the boundary condition ṽa(0,2)
z = 0 at the top boundary z = 1, it can easily be

seen that ṽa(0,2)
z = 0 throughout the domain. Similarly, using the boundary condition

at z = −H , it can easily be concluded that ṽb(0,2)
z = 0. It is further convenient to

set p̃b(0,2)
f = 0 so that p̃a(0,2)

f is determined from the boundary conditions (A 14). The

governing equations for ṽa(0,2)
x and ṽb(0,2)

x are linear (A 13), and the eigenfunctions can
be written as

ṽa(0,2)
x (z) = µ1 z + ṽa(0,2)

x (0), (A 15)

ṽb(0,2)
x (z) = µ2z + ṽb(0,2)

x (0). (A 16)

Here µ1 and µ2 are arbitrary constants, and ṽa(0,2)
x (0) and ṽb(0,2)

x (0) are the x velocities

at the interface. Thus there are six unknowns to be determined: p̃a(0,2)
f , ũ(0,2)

z , µ1, µ2,

ṽa(0,2)
x (0) and ṽb(0,2)

x (0).
The boundary conditions corresponding to the fluid normal-velocity continuity,

tangential-velocity continuity of fluids A and B, normal-stress balance, tangential-
stress balance and the fluid-membrane normal velocity continuity are given by equa-
tions (A 17), (A 18), (A 19), (A 20), (A 21) and (A 22) respectively. Note that for the
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(k = 0, n = 2) problem, all the perturbation variables are real, so that ṽa(0,2)
x = ṽ∗a(0,2)

x

and similarly for the other variables. The equations for the boundary conditions are

ṽa(0,2)
z + ṽ∗a(0,2)

z − ṽb(0,2)
z − ṽ∗b(0,2)

z + iαũ∗a(1,1)
z ṽa(1,1)

x − iαũ(1,1)
z ṽ∗a(1,1)

x − iαũ∗(1,1)
z ṽb(1,1)

x

+iαũ(1,1)
z ṽ∗b(1,1)

x + iαũ∗(1,1)
x ṽa(1,1)

z − iαũ(1,1)
x ṽ∗a(1,1)

z − iαũ∗(1,1)
x ṽb(1,1)

z + iαũ(1,1)
x ṽ∗b(1,1)

z

+ũ∗(1,1)
z ∂zṽ

a(1,1)
z + ũ(1,1)

z ∂zṽ
∗a(1,1)
z − ũ∗(1,1)

z ∂zṽ
b(1,1)
z − ũ(1,1)

z ∂zṽ
∗b(1,1)
z = 0, (A 17)

Λa ũ
(0,2)
z + Λa ũ

∗(0,2)
z + ṽa(0,2)

x + ṽ∗a(0,2)
x − iαΛa ũ

∗(1,1)
x ũ(1,1)

z − iαΛa ũ
(1,1)
x ũ∗(1,1)

z

−2 α (−is0) ũ(1,1)
z ũ∗(1,1)

z + iαũ∗(1,1)
x ṽa(1,1)

x iαũ(1,1)
x ṽ∗a(1,1)

x − iαũ∗(1,1)
z ṽa(1,1)

z

+iαũ(1,1)
z ṽ∗a(1,1)

z + ũ∗(1,1)
z ∂zṽ

a(1,1)
x + ũ(1,1)

z ∂zṽ
∗a(1,1)
x = 0, (A 18)

Λb ũ
(0,2)
z + Λb ũ

∗(0,2)
z + ṽb(0,2)

x + ṽ∗b(0,2)
x − iαΛb ũ

∗(1,1)
x ũ(1,1)

z iαΛb ũ
(1,1)
x ũ∗(1,1)

z

−2 α (−is0) ũ(1,1)
z ũ∗(1,1)

z + iαũ∗(1,1)
x ṽb(1,1)

x − iαũ(1,1)
x ṽ∗b(1,1)

x − iαũ∗(1,1)
z ṽb(1,1)

z

+iαũ(1,1)
z ṽ∗b(1,1)

z + ũ∗(1,1)
z ∂zṽ

b(1,1)
x + ũ(1,1)

z ∂zṽ
∗b(1,1)
x = 0, (A 19)

−p̃a(0,2)
f − p̃∗a(0,2)

f + p̃
b(0,2)
f + p̃

∗b(0,2)
f + 2 ∂zṽ

a(0,2)
z + 2 ∂zṽ

a(0,2)
z − 2 ηr ∂zṽ

b(0,2)
z

−2 ηr ∂zṽ
b(0,2)
z + iαp̃∗a(1,1)

f ũ(1,1)
x − iαp̃∗b(1,1)

f ũ(1,1)
x − iαp̃a(1,1)

f ũ∗(1,1)
x + iαp̃b(1,1)

f ũ∗(1,1)
x

−iα3 ũ∗(1,1)
x ũ(1,1)

z + 2α2 Λa ũ
∗(1,1)
x ũ(1,1)

z − 2α2 Λb ηr ũ
∗(1,1)
x ũ(1,1)

z + iα3ũ(1,1)
x ũ∗(1,1)

z

+2α2 Λa ũ
(1,1)
x ũ∗(1,1)

z − 2α2 Λb ηr ũ
(1,1)
x ũ∗(1,1)

z − 2α2ũ∗(1,1)
z ṽa(1,1)

z − 2α2ũ(1,1)
z ṽ∗a(1,1)

z

+2α2ηr ũ
∗(1,1)
z ṽb(1,1)

z + 2α2ηr ũ
(1,1)
z ṽ∗b(1,1)

z − ũ∗(1,1)
z ∂zp̃

a(1,1)
f − ũ(1,1)

z ∂zp̃
∗a(1,1)
f

+ũ∗(1,1)
z ∂zp̃

b(1,1)
f + ũ(1,1)

z ∂zp̃
∗b(1,1)
f + 2iαũ∗(1,1)

z ∂zṽ
a(1,1)
x − 2iαũ(1,1)

z ∂zṽ
∗a(1,1)
x

−2iαηrũ
∗(1,1)
z ∂zṽ

b(1,1)
x + 2iαηrũ

(1,1)
z ∂zṽ

∗b(1,1)
x + 2iαũ∗(1,1)

x ∂zṽ
a(1,1)
z − 2iαũ(1,1)

x ∂zṽ
a(1,1)
z

−2iαηrũ
∗(1,1)
x ∂zṽ

b(1,1)
z + 2iαηrũ

(1,1)
x ∂zṽ

a(1,1)
z + 2 ũ∗(1,1)

z ∂2
z ṽ
a(1,1)
z + 2 ũ(1,1)

z ∂2
z ṽ
∗a(1,1)
z

−2 ηr ũ
∗(1,1)
z ∂2

z ṽ
b(1,1)
z − 2 ηr ũ

(1,1)
z ∂2

z ṽ
∗b(1,1)
z = 0, (A 20)

2µ1 − 2µ3 ηr + 4α3 ηm (−is0) ũ(1,1)
x ũ∗(1,1)

x − 4α2 Λa ũ
(1,1)
z ũ∗(1,1)

z + 4α2 Λb ηr ũ
(1,1)
z ũ∗(1,1)

z

−2α2ũ∗(1,1)
z ṽa(1,1)

x − 2α2ũ(1,1)
z ṽ∗a(1,1)

x + 2α2ηr ũ
∗(1,1)
z ṽb(1,1)

x + 2α2ηr ũ
(1,1)
z ṽ∗b(1,1)

x

−α2 ũ∗(1,1)
x ṽa(1,1)

z − α2 ũ(1,1)
x ṽ∗a(1,1)

z + α2 ηr ũ
∗(1,1)
x ṽb(1,1)

z + α2 ηr ũ
(1,1)
x ṽ∗b(1,1)

z

+iαũ∗(1,1)
x ∂zṽ

a(1,1)
x − iαũ(1,1)

x ∂zṽ
∗a(1,1)
x − iα ηr ũ

∗(1,1)
x ∂zṽ

b(1,1)
x + iα ηr ũ

(1,1)
x ∂zṽ

∗b(1,1)
x

−iαũ∗(1,1)
z ∂zṽ

a(1,1)
z + iαũ(1,1)

z ∂zṽ
∗a(1,1)
z + iα ηr ũ

∗(1,1)
z ∂zṽ

b(1,1)
z − iα ηr ũ

(1,1)
z ∂zṽ

∗b(1,1)
z

+ũ∗(1,1)
z ∂2

z ṽ
a(1,1)
x + ũ(1,1)

z ∂2
z ṽ
∗a(1,1)
x − ηr ũ∗(1,1)

z ∂2
z ṽ
b(1,1)
x − ηr ũ(1,1)

z ∂2
z ṽ
∗b(1,1)
x = 0, (A 21)

ṽa(0,2)
z + ṽ∗a(0,2)

z + α (−is0) ũ∗(1,1)
x ũ(1,1)

z + α (−is0) ũ (1,1)
x ũ∗(1,1)

z
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+iαũ∗(1,1)
z ṽa(1,1)

x − iαũ(1,1)
z ṽ∗a(1,1)

x + iαũ∗(1,1)
x ṽa(1,1)

z − iαũ (1,1)
x ṽ∗a(1,1)

z

+ũ∗(1,1)
z ∂zṽ

a(1,1)
z + ũ(1,1)

z ∂zṽ
∗1(1,1)
z = 0. (A 22)

The fluid normal-velocity continuity condition at z = 0, and the membrane–fluid
normal-velocity continuity condition, are identically satisfied by the solutions ṽa(0,2)

z = 0
and ṽb(0,2)

z = 0, as indicated by equations (A 17) to (A 22). The six unknowns can then
be determined using the two tangential-velocity boundary conditions, the normal-
stress boundary condition and the tangential-stress boundary condition, and two
additional conditions are imposed:

µ1 (1) + ṽa(0,2)
x (0) = 0, (A 23)

µ2 (−H) + ṽb(0,2)
x (0) = 0, (A 24)

which correspond to the assumption that the top and bottom plate velocities are
unchanged.

The solution of the k = 0, n = 2 problem suggests that the membrane can have a
non-zero normal displacement (ũ(0,2)

z ) by generating a non-zero mean pressure in

fluid A (p̃a(0,2)
f ). Thus the membrane moves to a new position in the z-direction,

where the shear-stress balance is identically satisfied, and the tangential velocities are
continuous. This is necessary, as it is postulated that the membrane does not develop
any net mean tangential displacement in the x-direction and hence does not generate
mean stresses. This solves the k = 0, n = 2 problem. The velocity ṽ(0,2)

x represents the
distortion of the laminar flow velocity profile due to the nonlinearities occurring at
the boundary conditions, and this distortion is a linear function of z.

A.3. The k = 2, n = 2 problem

The k = 2, n = 2 problem represents the nonlinear correction to the first harmonic of
the linearly unstable wavenumber α. The governing equations at order k = 2, n = 2
are

∂zṽ
l(2,2)
z + 2iαṽl(2,2)

x = 0, (A 25)

−2iαp̃l(2,2)
f +

ηl

ηa
(∂2
z − 4α2)ṽl(2,2)

x = 0, (A 26)

−∂zp̃l(2,2)
f +

ηl

ηa
(∂2
z − 4α2)ṽl(2,2)

z = 0. (A 27)

These governing equations are supplemented by homogeneous boundary conditions at
z = 1 and z = −H . At z = 0 there are six inhomogeneous boundary conditions. The
boundary conditions corresponding to the fluid normal-velocity continuity, tangential-
velocity continuity of fluids A and B, normal-stress balance, tangential-stress balance
and the fluid–membrane normal-velocity continuity are given by equations (A 28),
(A 29), (A 30), (A 31), (A 32) and (A 33) respectively,

ṽa(2,2)
z − ṽb(2,2)

z − iαΛa (ũ(1,1)
z )2 + iαΛb (ũ(1,1)

z )2 − iαũ(1,1)
z ṽa(1,1)

x + iαũ(1,1)
z ṽb(1,1)

x

+iαũ(1,1)
x ṽa(1,1)

z − iαũ(1,1)
x ṽb(1,1)

z + ũ(1,1)
z ∂zṽ

a(1,1)
z − ũ(1,1)

z ∂zṽ
b(1,1)
z = 0, (A 28)

−2i(−is0) ũ(2,2)
x + Λa ũ

(2,2)
z + ṽa(2,2)

x + 2α(−is0) (ũ(1,1)
x )2 + iαΛa ũ

(1,1)
x ũ(1,1)

z

+α (−is0) (ũ(1,1)
z )2 + iαũ(1,1)

x ṽa(1,1)
x + iαũ(1,1)

z ṽa(1,1)
z + ũ(1,1)

z ∂zṽ
a(1,1)
x = 0, (A 29)
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−2i(−is0) ũ(2,2)
x + Λb ũ

(2,2)
z + ṽb(2,2)

x + 2α(−is0) (ũ(1,1)
x )2 + iαΛb ũ

(1,1)
x ũ(1,1)

z

+α (−is0) (ũ(1,1)
z )2 + iαũ(1,1)

x ṽb(1,1)
x + iαũ(1,1)

z ṽb(1,1)
z + ũ(1,1)

z ∂zṽ
b(1,1)
x = 0, (A 30)

−p̃a(2,2)
f + p̃

b(2,2)
f − 4α2 ũ(2,2)

z − 4iαΛa ũ
(2,2)
z + 4iαΛb ηr ũ

(2,2)
z + 2∂zṽ

a(2,2)
z

−2ηr ∂zṽ
b(2,2)
z − iαp̃a(1,1)

f ũ(1,1)
x + iαp̃b(1,1)

f ũ(1,1)
x − iα3 ũ(1,1)

x ũ(1,1)
z

+2α2 Λa ũ
(1,1)
x ũ(1,1)

z − 2α2 Λb ηr ũ
(1,1)
x ũ(1,1)

z + 2α2ũ(1,1)
z ṽa(1,1)

z − 2α2 ηr ũ
(1,1)
z ṽb(1,1)

z

−ũ(1,1)
z ∂zp̃

a(1,1)
f + ũ(1,1)

z ∂zp̃
b(1,1)
f − 2iαũ(1,1)

z ∂zṽ
a(1,1)
x + 2iαηr ũ

(1,1)
z ṽb(1,1)

x

+2iαũ(1,1)
x ∂zṽ

a(1,1)
z − 2iαηr ũ

(1,1)
x ∂zṽ

b(1,1)
z + 2ũ(1,1)

z ∂2
z ṽ
a(1,1)
z

−2ηr ũ
(1,1)
z ∂2

z ṽ
b(1,1)
z = 0, (A 31)

−4α2 K ũ(2,2)
x − 16iα2 ηm (−is0) ũ(2,2)

x + 2iαṽa(2,2)
z − 2iαηr ṽ

b(2,2)
z + ∂zṽ

a(2,2)
x

−ηr ∂zṽb(2,2)
x − iα3 K (ũ(1,1)

x )2 + 2α3 ηm (−is0) (ũ(1,1)
x )2 + 2α2 Λa (ũ(1,1)

z )2

−2α2 Λb ηr (ũ(1,1)
z )2 + 2α2ũ(1,1)

z ṽa(1,1)
x − 2α2 ηr ũ

(1,1)
z ṽb(1,1)

x − α2 ũ(1,1)
x ṽa(1,1)

z

+α2 ηr ũ
(1,1)
x ṽb(1,1)

z + iαũ(1,1)
x ∂zṽ

a(1,1)
x − iαηr ũ

(1,1)
x ṽb(1,1)

x + 3iαũ(1,1)
z ∂zṽ

a(1,1)
z

−3iαηr ũ
(1,1)
z ∂zṽ

b(1,1)
z + ũ(1,1)

z ∂2
z ṽ
a(1,1)
x − ηr ũ(1,1)

z ∂2
z ṽ
b(1,1)
x = 0, (A 32)

ṽa(2,2)
z − 2i(−is0) ũ(2,2)

z + α (−is0) ũ(1,1)
x ũ(1,1)

z − iαΛa (ũ(1,1)
z )2 − iαũ(1,1)

z ṽa(1,1)
x

+iαũ(1,1)
x ṽa(1,1)

z + ũ(1,1)
z ∂zṽ

a(1,1)
z = 0. (A 33)

The eigenfunctions for ṽa(2,2)
z and ṽb(2,2)

z can be obtained analytically, by the usual

method of eliminating ṽl(2,2)
x and p̃

l(2,2)
f to obtain a fourth-order ordinary differential

equation for both the fluids. The top and bottom plate boundary conditions pro-
vide two constants for each fluid. The remaining four constants and the membrane
displacement variables ũ(2,2)

x and ũ(2,2)
z can then be found using the six boundary con-

ditions at the interface, as the linear system of equations at this order admits trivial
solution to the homogeneous problem.

A.4. The k = 1, n = 3 problem

The variation of the amplitude A(τ) with the slow time scale appears as inhomo-
geneous terms in the boundary conditions at order k = 1, n = 3. The governing
equations are identical to those for the linear problem k = 1, n = 1, since there are no
nonlinear terms in the them.

The boundary conditions at order (1, 3) are given by

ṽa(1,3)
z − ṽb(1,3)

z = g1, (A 34)

ṽa(1,3)
x + Λaũ

(1,3)
z − s(0)ũ(1,3)

x = g2, (A 35)

ṽb(1,3)
x + Λbũ

(1,3)
z − s(0)ũ(1,3)

x = g3, (A 36)

(−iαp̃a(1,3)
f + 2∂zṽ

a(1,3)
z )−

(
−iαp̃b(1,3)

f + 2
ηl

ηa
∂zṽ

b(1,3)
z

)
, (A 37)
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−(2(Λa − ηrΛb)iα+ α2)ũ(1,3)
x = g4, (A 38)

(∂zṽ
a(1,3)
x + iαṽa(1,3)

z )− ηl

ηa
(∂zṽ

b(1,3)
x + iαṽb(1,3)

z ), (A 39)

−(K + 2ηms
(0))α2ũ(1,3)

x = g5, (A 40)

ṽa(1,3)
z − s(0)ũ(1,3)

z = g6. (A 41)

Here, g1, g2, g3, g4, g5 and g6 are the inhomogeneous terms in the boundary conditions
which arise due to nonlinear interactions of the fundamental mode and its higher
harmonics. The expressions for the inhomogeneities are very lengthy and are not
provided here. In the above equations, g2, g3 and g6 contain the slow time dependence
of A(τ) on τ. Using the solutions ṽl(1,3)

x and ṽl(1,3)
z which satisfy the boundary conditions

at z = 1 and z = −H , the interface boundary conditions (A 34) are written asB u = G.
The left-hand side of the boundary conditions in the (1,3) problem (B u) are identical
to the (homogeneous) boundary conditions that appeared in the linear problem
(k = 1, n = 1). The homogeneous problem B u = 0 has non-trivial solutions for the
k = 1, n = 3 problem. For the inhomogeneous k = 1, n = 3 problem to have non-
trivial solution, Fredholm’s alternative theorem states that the solution of the adjoint
problem should be orthogonal to the inhomogeneous term G. The solutions when
substituted in the boundary conditions can then be written in the matrix form as

C · A = G, (A 42)

where vector A is the matrix of constants in the boundary conditions for the (1, 3)
problem, C = (cij) is the coefficient matrix and vector G = [g1, g2, g3, g4, g5, g6]. The
expression for the Landau coefficient is obtained using the solvability condition for the
matrix equation. The adjoint problem for equation (A 42) is constructed by defining
the inner product of two vectors u and v as

〈u, v〉 =
∑

u∗i vi, (A 43)

where u∗i is the complex conjugate of ui. Using the definition of adjoint we obtain

C+ · A+ = 0, (A 44)

where A+ = [a1, a2, a3, a4, a5, a6] is the non-trivial adjoint solution for the homoge-
neous adjoint problem, and C+ = (c∗ji) is the adjoint of the matrix C . The Landau
equation is then obtained using the Fredholm solvability condition by setting the
solution of the adjoint problem orthogonal to the inhomogeneities.

A+ · G = 0 (A 45)

Appendix B. Method of Stuart (1960) to solve the k = 1, n = 3 problem
Consider the functions φ1(z), φ2(z) and ψ1(z), ψ2(z) such that they satisfy φ1(1) =

∂zφ1(1) = φ2(−H) = ∂zφ2(−H) = 0 and ψ1(1) = ∂zψ1(1) = ψ2(−H) = ∂zψ2(−H) = 0,
and φ1 and ψ1 are defined in the domain 0 < z < 1, and φ2 and ψ2 are defined in the
domain −H < z < 0. The adjoint problem is constructed by multiplying Lφ by ψ
and integrating from −H to 1, where L ≡ (∂2

z − α2)2. Integrating by parts yields∫ 1

0

dzψ1Lφ1+

∫ 0

−H
dzψ2Lφ2 =

∫ 1

0

φ1Lψ1 dz+J1|z=0+

∫ 0

−H
φ2Lψ2 dz+J2|z=0. (B 1)
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Here J1 and J2 are the terms evaluated at the boundary z = 0. They are given by

J1 = −[ψ1(φ
′′′
1 − 2α2φ′1)]z=0 + [ψ′1(φ

′′
1 − 2α2φ1)]z=0 − [φ′1ψ

′′
1 ]z=0 + [φ1ψ

′′′
1 ]z=0, (B 2)

J2 = [ψ2(φ
′′′
2 − 2α2φ′2)]z=0 − [ψ′2(φ

′′
2 − 2α2φ2)]z=0 + [φ′2ψ

′′
2 ]z=0 − [φ2ψ

′′′
2 ]z=0. (B 3)

Let φ1 = ṽa(1,1)
z and φ2 = ṽb(1,1)

z . Then, the left-hand side of equation (B 1) vanishes
because ṽa(1,1)

z and ṽb(1,1)
z identically satisfy the differential equations Lṽa(1,1)

z = 0 and
Lṽ(1,1)

z = 0. If we choose the adjoint function to satisfyLψ1 = 0 in the range 0 < z < 1
and Lψ2 = 0 in the range −H < z < 0, then the integrals on the right-hand side of
(B 1) also vanish. Hence, the boundary conditions for the adjoint functions ψ1 and
ψ2 at z = 0 are determined by letting J1 + J2 = 0 so that we obtain the following
definition for the adjoint operators:∫ 0

−H
ψ2Lφ2 +

∫ 1

0

ψ1Lφ1 =

∫ 0

−H
φ2Lψ2 +

∫ 1

0

φ1Lψ1. (B 4)

The condition J1|z=0 + J2|z=0 = 0 yields the following boundary conditions on the
adjoint functions ψ1 and ψ2 at z = 0. In J1|z=0 + J2|z=0 = 0, the values of φ1 and
its higher derivatives are expressed in terms of φ2 and its higher derivatives using
(A 34)–(A 41), where the inhomogeneities g are put to zero to obtain the homogeneous
problem. Since φ2 and its derivatives are non-zero at the interface, the boundary
conditions for the adjoint eigenfunctions ψ1 and ψ2 are obtained by equating the
coefficients of φ2 and its derivatives, to zero, to give

ψ2 = ηrψ1, (B 5)

ψ′1 =
s†ψ1(1− ηr)
(K + 2ηms†)

+
s†(ψ′′1 − ψ′′2 )

α2(K + 2ηms†)
, (B 6)

ψ′2 = ηrψ
′
1, (B 7)

ψ′′′2 = α4ψ1

s†
+
iα3Λaψ1

s†
− α2s†ψ1(1− ηr)2

(K + 2ηms†)
− 2α2(ψ′1 − ψ′2)

− iαΛaψ
′′
1

s†
− (ψ′′1 (1− ηr)− ψ′′2 (1− ηr))s†

(K + 2ηms†)
+ ψ′′′1 , (B 8)

where s† is the eigenvalue of the adjoint problem and ηr = ηb/ηa. Using the above
boundary conditions along with the differential equationsLψ1 = 0 andLψ2 = 0, the
eigenvalue s† and the adjoint functions ψ1 and ψ2 are calculated.

The criterion for solvability (a variant of the Fredholm alternative theorem) for
the inhomogeneous problem that occurs at k = 1, n = 3 is determined as follows.
The governing equations for the (1, 3) problem are homogeneous, i.e. Lṽ(1,3)

z = 0 and
Lũ(1,3)

z = 0. Multiplying Lṽ(1,3)
z by the adjoint function ψ1 and multiplying Lũ(1,3)

z by
the adjoint function ψ2 and integrating over the appropriate domains, we obtain∫ 0

−H
ψ2Lũ(1,3)

z dz +

∫ 1

0

ψ1Lṽ(1,3)
z dz =

∫ 0

−H
ũ(1,3)
z Lψ2 dz +

∫ 1

0

ṽ(1,3)
z Lψ1 dz +J1 +J2,

(B 9)

where J1 and J2 are the boundary terms evaluated at z = 0 that contain (bilinear)
products of ṽ(1,3)

z , ψ1 and ũ(1,3)
z and ψ2 and their derivatives. The left-hand side of

(B 9) is identically zero since Lũ(1,3)
z =Lṽ(1,3)

z = 0. The integrals in the right side are
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zero since the adjoint functions ψ1 and ψ2 are constructed to satisfyLψ1 =Lψ2 = 0.
Therefore, the necessary and sufficient condition for the existence of solutions at
k = 1, n = 3 is given by

J1 +J2 = 0. (B 10)

The terms J1 and J2 contain the inhomogeneities g1, g2, g3, g4, g5, g6 that occur in the
boundary conditions of the (1, 3) problem, and also the adjoint eigenfunctions ψ1 and
ψ2 and their derivatives. These inhomogeneous terms, in turn, contain the slow varia-
tion of A(τ) with τ. Thus, the solvability condition that arises from the inhomogeneous
nature of the boundary conditions determines the Landau equation at this order.

For the present purposes, it is useful to rewrite the inhomogeneous boundary
conditions as follows:

F1 = ṽa(1,3)
z − ṽb(1,3)

z , (B 11)

F2 = ∂z ṽ
a(1,3)
z − iαΛa ṽ

a(1,3)
z

s(0)
− s(0)

α2(K + 2ηms(0))

×[(∂2
z ṽ

a(1,3)
z ) + α2ṽa(1,3)

z )− ηr(∂2
z ṽ

b(1,3)
z + α2ṽb(1,3)

z )], (B 12)

F3 = ∂z ṽ
b(1,3)
z − iαΛb ṽ

a(1,3)
z

s(0)
− s(0)

α2(K + ηms(0))

×[(∂2
z ṽ

a(1,3)
z ) + α2 ṽa(1,3)

z )− ηr(∂2
z ṽ

b(1,3)
z + α2ṽb(1,3)

z )], (B 13)

F4 = ∂3
z ṽ

a(1,3)
z − ηr ∂3

z ṽ
b(1,3)
z − 3α2(∂z ṽ

a(1,3)
z − ηr ∂z ṽb(1,3)

z )

+(2(Λa − ηrΛb )iα3 + α4)
ṽ(1,3)
z

s(0)
. (B 14)

Here, F1, F2, F3, F4 are related to the inhomogeneous functions (A 34)–(A 41)
g1, g2, g3, g4, g5, g6, and the continuity and x momentum equations are used to eliminate
the pressure terms. The extra two equations for the membrane displacement are
replaced in terms of fluid velocities from the normal-velocity continuity and tangential-
stress balance to give expressions for all the derivatives of ṽ(1,3)

z . These expressions are

F1 = g1, (B 15)

F2 = −iα

(
g2 +

Λag6

s(0)
− s(0)g5

α2(K + 2ηms(0))

)
, (B 16)

F3 = −iα

(
g3 +

Λbg6

s(0)
− s(0)g5

α2(K + 2ηms(0))

)
, (B 17)

F4 = −α2

(
g4 − α2 g6

s(0)

)
. (B 18)

Using the above for the inhomogeneous boundary conditions, the solvability condition
for the existence of solutions, i.e.J1 +J2 = 0 for the case of Λb = 0 becomes, at z = 0,[
−(α2 F2)− F4 + α2 F3 ηr + F1

(
α4

s(0)
+

iα3 Λ

s(0)
− 3α2 s(0)

θ
+

3α2 ηr s
(0)

θ

)]
ψ1(0)

+

[
−F2 − iαF1Λ

s(0)
− 3F1s

(0)

θ

]
ψ1
′′(0) +

[
F3 +

3F1s
(0)

θ

]
ψ2
′′(0) + F1ψ1

(3)(0) = 0. (B 19)



50 R. M. Thaokar and V. Kumaran

In the above equation, the adjoint functions ψ1 and ψ2 are known from the solution of
the adjoint problem, and θ = K + 2ηms

(0). On substituting the adjoint functions ψ1 and
ψ2, and taking the real part of the resulting equation, we obtain the Landau equation,

A(τ)−1∂τA(τ) = Λ2

ds(0)
r

dΛa
+ s(1)

r A(τ)2. (B 20)

The imaginary part of the solvability condition gives the frequency of the waves,

ω = s
(0)
i + Λ2

ds(0)
i

dΛa
+ s

(1)
i A(τ)2. (B 21)

Here s(1)
r is the real part of the first Landau constant, which determines whether the

instability is subcritical or supercritical and s
(1)
i is the correction to the frequency of

the basic wave due to nonlinear self-interactions. If s(1)
r is positive the instability is

subcritical, while if s(1)
r is negative the instability is supercritical.

REFERENCES

Harden, L. & Pleiner, P. 1994 Hydrodynamic modes of viscoelastic polymer films. Phys. Rev. E
49, 1411–1424.

Hooper, A. & Boyd, W. 1983 Shear flow instability at the interface between two viscous fluids.
J. Fluid Mech. 128, 507.

Joseph, D. & Renardy, Y. 1993 Fundamentals of Two-fluid Dynamics. Springer.

Kumaran, V. 1995 Stability of the viscous flow of a fluid through a flexible tube. J. Fluid. Mech.
294, 259–281.

Kumaran, V., Fredrickson, G. H. & Pincus, P. 1994 Flow induced instability of the interface
between a fluid and a gel at low Reynolds number. J. Phys. Paris II 4, 893–904.

Kumaran, V. & Muralikrishnan, R. 2000 Spontaneous growth of fluctuations in the flow over
flexible surfaces. Phys. Rev. Lett. 84, 3310–3313.

Kumaran, V. & Srivatsan, L. 1998 Stability of fluid flow past a membrane. Eur. Phys. J. B 2,
259–266.

Pierce, R. 1992 The Ginzburg–Landau equation for interfacial instabilities. Phys. Fluids A 4,
2486–2494.

Rotenberry, J. 1992 Finite amplitude shear waves in a channel with compliant boundaries. Phys.
Fluids A 4, 270–276.

Rotenberry, J. & Saffman, P. 1990 Effect of compliant boundaries on weakly nonlinear shear
waves in channel flow. SIAM J. Appl. Maths 50, 361–394.

Shankar, V. & Kumaran, V. 2001 Weakly nonlinear theory of flow over flexible surfaces. J. Fluid
Mech. 434, 337–354.

Stewartson, K. & Stuart, J. 1971 A nonlinear instability theory for a wave system in plane
Poiseuille flow. J. Fluid Mech. 48, 529–545.

Stuart, J. 1960 On the nonlinear mechanics of wave disturbances in stable and unstable parallel
flow. Part 1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9, 353–370.

Thomas, M. D. 1992 The nonlinear stability of flows over compliant walls. J. Fluid Mech. 239,
657–670.

Yih, C. 1967 Instability due to viscous stratification. J. Fluid Mech. 27, 337–352.


